J.C.S. CHEM. COMM., 1975

Crystal Structure of α -P₂W₁₈O₆₂ Anion

By Kazuko Y. Matsumoto and Yukiyoshi Sasaki*

(Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113)

Summary Crystals of α -Ba₃P₂W₁₈O₆₂·29H₂O have been shown by X-ray diffraction to contain the α -P₂W₁₈O⁶⁻² anion, which is a geometrical isomer of β -P₂W₁₈O⁶⁻² solved by Dawson in 1953.

18-Tungsto-2-phosphoric acid and its salts always have two isomers, the $\alpha\text{-}$ and $\beta\text{-}\mathrm{forms.}^{1,2}$. The two-dimensional X-ray structure determination of $\beta\text{-}\mathrm{K}_6\mathrm{P}_2\mathrm{W}_{18}\mathrm{O}_{62}\text{-}14\mathrm{H}_2\mathrm{O}$ by Dawson³ showed that the $\beta\text{-}$ form of the polyanion has the

structure shown in Figure 1, but the origin of the isomerism was not known. We report the structure of the $\alpha\text{-}$ form in crystals of the barium salt.

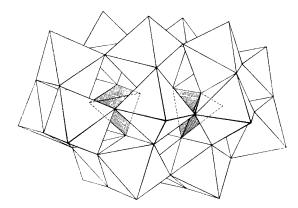


Figure 1. β -P₂W₁₈O₆₂ anion.

Lemon-yellow rhombic crystals $(0.1\times0.1\times0.07~\mathrm{mm})$ of α -Ba₃P₂W₁₈O₆₂·29 H₂O, which were stable in air, were precipitated from a solution prepared by cation-exchange from the ammonium salt synthesized by Wu's method.¹ Crystal data: Ba₃P₂W₁₈O₆₂·29H₂O, orthorhombic, space group $Pmn2_1$; a=20.18(3), b=14.94(2), c=12.98(2) Å; U=3913.3 ų; $D_{\rm m}=4.49$, $D_{\rm c}=4.50~\mathrm{g~cm^{-3}}$; Z=2. The intensities of 3130 independent reflections up to $2\theta=60^\circ$ were collected on a Rigaku automatic four-circle diffractometer with Mo– K_α radiation and a graphite monochromator.

The structure was solved by the heavy-atom method. Refinement by block-diagonal least-squares using anisotropic temperature factors for tungsten, barium, and phosphorus and isotropic ones for oxygen atoms reduced the R-value to 16.9% at the present stage. Water molecules have not yet been located.

The polyhedral models of the β - and α -P₂W₁₈O₆₂, shown

- ¹ H. Wu, J. Biol. Chem., 1920, 43, 189.
- ² A. Rosenheim and A. Traube, Z. anorg. Chem., 1915, 9, 74.
- ³ B. Dawson, Acta Cryst., 1953, 6, 113.
- ⁴ J. F. Keggin, Proc. Roy. Soc., 1934, A144, 75.
- ⁵ R. Strandberg, Acta Chem. Scand., 1974, A28, 217.
- ⁶ L. C. Baker and J. S. Figgis, J. Amer. Chem. Soc., 1970, 92, 3794.

in Figures 1 and 2, can be divided into two PW_9O_{34} units which are made from the well known Keggin structure⁴ of $PW_{12}O_{40}^{3-}$ by removing a W_9O_{15} ring formed from three WO_6 octahedra by sharing corners. A similar structure was recently found in the 9-molybdophosphate, $H_6PMo_9O_{34}^{3-}$.

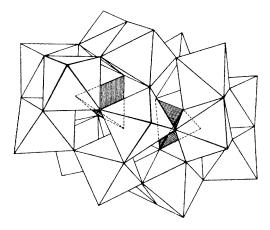


Figure 2. $\alpha\text{-P}_2\mathrm{W}_{18}\mathrm{O}_{62}^6\overline{}$ anion.

The two half-units can be joined at 6 oxygen atoms in two different ways to yield α - and β -P₂W₁₈O⁶₂ anions. In the β -form the anion has a mirror plane passing through these six points, whereas in the α -form the two units are combined in a staggered arrangement as shown in Figure 2 and the polyanion has D_{3d} symmetry, since the mirror plane in the β -model of D_{3h} symmetry is lost.

The present model is included in the six models proposed by Baker and Figgis⁶ as possible isomeric structures of the 18-heteropolyacid.

(Received, 30th June 1975; Com. 734.)